

AFRL-RI-RS-TM-2008-18
In House Technical Memorandum
April 2008

HARDWARE BASED FUNCTION LEVEL
MANDATORY ACCESS CONTROL FOR MEMORY
STRUCTURES

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TM-2008-18 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

DUANE GILMOUR, Chief JAMES A. COLLINS, Deputy Chief
Computing Technology Applications Br. Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 07 – Sep 07
5a. CONTRACT NUMBER

In-House

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

HARDWARE BASED FUNCTION LEVEL MANDATORY ACCESS
CONTROL FOR MEMORY STRUCTURES

5c. PROGRAM ELEMENT NUMBER
N/A

5d. PROJECT NUMBER
230B

5e. TASK NUMBER
LY

6. AUTHOR(S)

Lok Kwong Yan

5f. WORK UNIT NUMBER
SA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RITB
525 Brooks Rd
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TM-2008-18

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-2295

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report presents the results of the mini-grant research project. It explores a possible explanation on why buffer
overflows, format strings and other memory related vulnerabilities are still prevalent today. It is argued that this can be
attributed to the required level of user interaction to apply today’s solutions. Therefore, the researched solution was a
hardware based instruction level mandatory access control mechanism that will be enabled by default whenever a user
obtains a new computer with such a processor. It also presents the reasoning behind why instruction level is more
desirable than function level access control mechanisms, which was the original theory. The design and proof of concept
demonstration as well as difficulties in achieving the desired proof are also presented.

15. SUBJECT TERMS
Buffer overflows, mandatory access control, no execution bit, memory tagging

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Lok Kwong Yan

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

22
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Table of Contents
1 Introduction ... 1
2 Background.. 1
3 Related Work... 3

3.1 Safe Languages .. 4
3.2 Compilers: StackGuard and CRED.. 4
3.3 Libraries and Applications ... 5
3.4 Hybrid Approaches .. 6
3.5 OS Level: PaX and Address Space Layout Randomization 6
3.6 Hardware: Dynamic Information Flow Tracking... 6
3.7 Hardware: Secure Bit2 ... 7
3.8 Categorization of Past Solutions .. 7
3.9 Secure Architectures .. 8

4 Design.. 10
4.1 Failure of Function Level Access Control ... 10
4.2 Instruction Level Access Control... 10

5 Proof of Concept.. 13
5.1 Bochs.. 13
5.2 Assembly Instruction Changes... 14
5.3 Memory Mapping... 14

6 Results ... 15
6.1 Conclusion.. 15

7 References ... 17

List of Figures
Figure 1: Diagram illustrating the range of user intervention to implement various buffer
overflow solutions... 8
Figure 2: Simple Policy .. 13
Figure 3: Illustration of Executable Tagging .. 15

1

1 Introduction
The original intention of this mini-grant was to research the applicability and
effectiveness of a hardware based mandatory access control mechanism operating at the
functional level. It was envisioned that a mandatory access control mechanism that
operated at the function level, i.e. a system that enforces read, write, and execute
permissions for memory blocks based on the current executing function, is a good
balance between required changes to a processor’s architecture, required user interaction
and the type of memory problems it can mitigate. This type of protection will provide an
additional layer of defense against memory based threats such as buffer overflows. The
hardware mechanism was expected to make the processor more robust against buffer
overflows independent of the underlying operating system.

The results were different. We learned that access control at the functional level is
inadequate for mitigating memory based threats. Also, integrating function level
protections would require drastic changes to a processor’s architecture, a highly
undesirable trait. Finer-grained control at the byte or word level is better for both
protection and ease of implementation.

This paper will present the results of the mini-grant research. It will explore a possible
explanation on why buffer overflows, format strings and other memory related
vulnerabilities are still so prevalent. We argue that the most successful solutions are ones
that can be integrated and applied without requiring any end-user intervention. Following
this concept, the most successful solution should be a hardware based one that can be
integrated into commodity processors with some operating system support. Like the No
eXecution (NX) bit technology, it should be easily integrated into current processor
architectures at low cost, while remaining backwards compatible with older software. But
unlike the NX bit technology, its use should not be discretionary upon the ring 3 user's
desire, but should have at least some mechanisms that are mandatory and uncontrollable
even at the ring 0 privileged operating system level.

The paper is organized as follows. Section 2 will introduce the underlying reason why
buffer overflow and related memory based vulnerabilities exist. Section 3 will enumerate
some of today's buffer overflow solutions. The idea of categorizing solutions based on
the requisite amount of end user interaction is also described in this section. Section 4
will discuss design considerations. Section 5 will discuss the proof of concept. Results
and conclusions will be presented in Section 6.

2 Background
The first great computer infection, the Morris Worm, made use of a buffer overflow
exploit in the fingerd application as its method of propagation [1]. This was back in 1988.
Given the extensive damage of the worm, one would think that a solution to inoculate the
world’s computers from such a sickness would be developed immediately. However, in
2001, thirteen years after the Morris Worm, the Code-Red and CodeRedII worms used
another buffer overflow that cost $2.6 billion to recover from [2]. This is a testimony to
the ineffectiveness of the developed solutions during that thirteen year period and the

2

overall prevalence of this attack scheme. In fact, even in 2007 the number of buffer
overflow vulnerabilities is expected to be an all time high [3].

After reviewing the available literature, we have concluded that the problem is not the
lack of solutions, but of a pervasive one that can be enabled and adapted easily by large
populations and that actually solves the underlying problem.

For analysis purposes, we define memory based vulnerabilities as vulnerabilities that
arise from the way that system memory is organized and used. They can be binned into
four large groups: un-initialized data, memory leaks, data disclosure and data corruption.
Un-initialized data problems arise when an application programmer fails to initialize
objects to fail-safe defaults. Memory leaks occur when applications allocate memory but
lose access to them; although, the operating system can retrieve the memory after the
application completes. Data disclosure problems occur when memory that should not be
readable by an application is. Data corruption threats are the ones where memory data is
overwritten when it was not part of the application designed to do so.

Unlike un-initialized data and memory leak vulnerabilities, data disclosure and corruption
vulnerabilities cannot be fully attributed to programmer error. Although programmers can
properly bounds check their buffers, the underlying problem exists because the CPU has
ubiquitous access to all of memory, i.e., memory is world read, write and executable by
the CPU. On the other hand, we consider uninitialized data and memory leak problems
software issues because processors do not have built in constructs to allocate memory on
the object level, this is all done in software.

The common problem amongst the four of them is the task of managing and protecting
memory is left to the operating system’s memory management unit (MMU). When a
process requests memory space from the operating system, the MMU rounds the
requested space to the nearest page and allocates those pages to the application. The
operating system then keeps track of the pages and performs access control on each page
to ensure that other processes cannot access the same address space unless explicitly
permitted. On the other hand, the CPU operates on instructions and bytes of memory.

This imbalance in the unit of protection in the operating system and the CPU, as well as
reliance on the operating system to offer access control for memory pages, is what
enables many of the memory based vulnerabilities. For example, buffer overflows are
successful because a process can overwrite all in-band (contiguous with reference to the
accessed variable) data as long as the data is within the page or even across pages
provided the pages are contiguous. This is true even though the write should be restricted
to only within the buffer itself. Unfortunately though, current processor designs and
operating systems can only control access on pages and not objects.

Upon review, we have concluded that there are three possible solutions to this problem:
increase the granularity of the operating system's memory access controls to memory
objects, implement access controls in hardware or a hybrid of the two. We believe that a
hybrid approach that implements mandatory access controls in hardware and provides
discretionary access control mechanisms for operating system use is the most desirable
solution. This approach has the most potential to affect a great number of users and
provides foundational support for a defense in depth strategy.

3

3 Related Work
As previously mentioned, many solutions have been proposed to close off the buffer
overflow attack vector. We believe that buffer overflow vulnerabilities are still high
impact items, not because the solutions are technically ineffective, but practically
ineffective. They either solve the wrong problem, that is prevent execution of user
supplied code instead of preventing the overflow in the first place, or because they
require too much user sophistication or interaction, which restricts its use.

In the following subsections, a few solutions and why we believe they are ineffective are
outlined. To understand the level of user interaction required, each will be placed into the
following categories ordered from high to low user-interaction: language, compiler,
library, application, operating system, and hardware. Who the user is undoubtedly
changes from solution to solution but the end-user will always remain the same.

To keep things simple, we define the user as the user of the solution, who will change
depending on the solution, and the end-user as the normal everyday person who simply
uses computers and is not cognizant of vulnerabilities, patches or anything related to the
topic. To illustrate, the user in language based solutions is the developer, in application
based solutions is the administrator, and the end-user in both of these remains the same.
Given this distinction, the further away the user and end-user are in terms of computer
systems know-how, the less desirable the solution. In other words, the most desirable
solution is one where all end-users can adopt readily.

Safe languages are considered the highest level of required user interaction because the
user in this case must be the skilled programmer who takes code written in an unsafe
language like C, and translates it into a safe language like Java. Such a task is extremely
difficult, costly and sometimes impossible when it comes to legacy code. Furthermore,
even if all of this is possible, the new version of the application must still be tested to
ensure backwards compatibility and the old version upgraded. Given the large number of
potential applications, requiring all developers to re-implement their software and
administrators to upgrade existing software, makes this solution almost impossible to be
widely adopted.

Compiler based solutions are better than language based solutions, since all that is
required is a recompilation of available source code, although it is ineffective for
situations when source code is not available. It also suffers from the installation and
distribution issue of safe languages. The user in this case does not need to be a developer,
just someone with the know-how of building new packages and then installing them.

Library and application level solutions are much better since now the user doesn't even
need to know any languages, all they need to do is install the new library or application.
Therefore, the user is an administrator.

Operating system (OS) solutions are similar to application level solutions, but are slightly
better because all computing systems require operating systems which normally come
pre-installed with new computers. Unfortunately though, this will require that all
operating systems must be updated to support this new feature. Since operating systems
these days comes with automatic patches and updates, the user for this solution can
actually be the end-user as long as the OS vendor supplies the patch.

4

Hardware based solutions require the least user intervention and are the most pervasive,
because changing the CPU or obtaining one through a new computer will mean that the
solution is built in and it doesn't matter which operating system is used. The user can be
the end-user, but that is only when a new system is purchased. For older systems, the
user must be an administrator or technician type since they must install and configure the
new hardware. Unfortunately, hardware only solutions are difficult to develop. A more
reasonable approach, and the approach taken in this project, is to develop a hardware
solution that requires operating system support. This is still valuable since in both cases
the user can potentially be the end-user.

3.1 Safe Languages
Since buffer overflow problems are primarily associated with C and C++, and more
specifically their use of unsafe C library functions like strcpy, memcpy, printf and etc.,
using safer languages like Java and C# is one possible solution. In fact, most modern
languages conduct bounds checking on all arrays, which would stop buffer overflows
before they can occur. The biggest problem with these solutions though, is that they are
not completely compatible with C and C++. What this means is that developers will have
to completely reengineer their codes to adapt to the paradigms of the new language. The
problem is exacerbated when legacy code is involved. In such situations, it might not
even be possible to port the software to a new language because the algorithmic and
implementation specifics have been lost with time.

Fortunately though, there are safer languages that are almost completely compatible with
C and C++. One example is Cyclone, a C variant [4]. It introduces the concept of fat
pointers, which are pointers that contain size information. By doing so, all the user needs
to do is to change their current buffer pointers to fat pointers and bounds checking will be
enforced, making the task of re-implementing software much simpler. Unfortunately
though, in order for this type of solution to be effective, all software developers must
jump on the band wagon and use the new language. There is nothing the end-user can do.

3.2 Compilers: StackGuard and CRED
StackGuard is probably one of the most well known stack smashing protection schemes
available. It is a modified version of the gcc compiler that automatically inserts
“canaries” into the stack before a function is called. After the function completes, and
before it returns to the return address on the stack, the canary value is checked with a
stored version. If the values do not match, then it means that the canary has been illegally
overwritten, and the stack is corrupted [5].

CRED (C Range Error Detection) is an extension to the GNU compiler that was
developed at Stanford University [6]. It relies on replacing every out-of-bounds pointer
value with the address of a special OOB (out-of-bounds) object created for that value.
The authors showed that it is an effective and viable solution. They ran CRED on 20
open source applications ranging in complexity from approximately 400 to 600,000 lines
of code and all test cases compiled and ran successfully. Unfortunately, slowdown for
these test cases range from no effect to 12 times depending on the prevalence of buffers
in the application.

5

In addition, seven of the 20 test cases were known to have buffer overflow
vulnerabilities. CRED successfully detected the overflow attempts when known exploits
were run against the applications. CRED also successfully detected overflow attempts for
twenty additional test cases covering stack, heap and data segment overflow
vulnerabilities. This is in sharp contrast to the 50% success rate of “ProPolice, the best of
the tools evaluated by Wilander and Kamkar” [6].

Even with the success of CRED, the same practicality problem as with safe languages
still exists. This solution, like other compiler based approaches, requires that each
vulnerable program be recompiled, which is still much better than reimplementation, in
order for the protection to take effect. This means that the source code for each
application must be available to the user that wishes to make use of CRED’s protection.

The source code requirement is not such a huge problem for the growing number of open
source projects, but it still requires the user to have the know-how of obtaining the
source, recompiling it, and then install the latest build. What this means is that the end-
users will have to wait until a new build of the software by the developers.

3.3 Libraries and Applications
At the next level of influence and required user interaction is the shared library.
Applications are also placed into this category because in both cases, the user will have to
be an administrator who will have to install the new libraries and/or applications. This is
also the point where the end-user might actually be able to implement the solutions. Or in
other words, the user and end-user has a good chance of being the same person.

Libsafe is an example of secure libraries [7]. It intercepts certain unsafe calls, calculates
the maximum allowed size of the buffer based on the stack frame address, and then calls
the safer bounded variant such as strncpy. Although this solution has proven to be
effective against some stack overflows, it still has some flaws. One problem is it does not
prevent the overflow itself, in-band data within the stack frame can still be overwritten.
Only the control flow data is protected. Like other library based approaches, it is only
applicable when the application is dynamically linked. It will not be effective for
statically linked software or for user defined functions.

Program Shepherding is a system built on top of Runtime Introspection and
Optimization, a dynamic optimizer application. It seeks to stop malicious code executions
by using the concepts of restricted code origins, restricted control transfers, and un-
circumventable sandboxing [8]. When an application is run under this solution, the loader
must first determine if the block of instructions is trusted in accordance with a security
policy and the origins of the code, e.g. executable file from the disk or dynamically
generated code, and tags them as executable. This first step is known as restricted code
origins. Restricted control transfers refers to the restriction of jumps and branches from
one block of memory to another only if it is allowed in the security policy, e.g. if the
target of the branch is not tagged as executable, then control transfer should be restricted.
Finally, uncircumventable sandboxing is used to ensure that all implemented security
checks must be done at all times. We believe that this type of solution is going down the
right direction, in terms of enforcing the execute permissions, but like other approaches,

6

it only targets the execution of malicious code and not the overwriting of data in the first
place.

3.4 Hybrid Approaches
While Program Shepherding monitors program control flows closely, Dynamic Access
Control monitors program data that might be indicative of an attack, even ones that do
not alter control flow [9]. The dangers of these types of attacks are demonstrated in [10].
Dynamic Access Control requires support at both the hardware and micro-architecture
level. The compiler identifies program regions where data should not be modified as per
program semantics. If there is an attempt to modify this data at runtime, the hardware
detects the attack. Again, since this answer to the buffer overflow problem requires a
compiler addition, recompilation and source code availability are both necessary.
Average performance degradation after optimizations is 14.1%. There is also an
associated memory overhead.

3.5 OS Level: PaX and Address Space Layout Randomization
PaX is a Linux kernel patch written by The PaX Team whose principal author chooses to
remain anonymous. PaX’s main avenues of defense are to mark data as non-executable
and take advantage of address space layout randomization (ASLR) [11]. By default, PaX
marks the memory that holds the stack, heap, anonymous memory mappings, and any
section not specifically marked as executable in an ELF file, non-executable. This
prevents the standard stack-smashing attack since shell code stored in the buffer on the
stack will be marked as non-executable. PaX randomizes the location of the stack, heap,
loaded libraries, and executable binaries thereby greatly reducing the likelihood of
success for attacks that rely on hardcoded addresses, such as a standard ret-libC attack.
This protection, when combined with a hardware protection scheme such as the NX bit
(discussed later) provides a powerful defense in depth solution.

Being a patch to the Linux kernel means that the target demographic that uses this
software will likely be adept at computer-related issues. These kinds of users would also
be capable of applying many of the other techniques and is normally not the victim of
memory based vulnerabilities. For this reason, PaX may not have as much to contribute
to solving buffer overflow issues as some other solutions that can be applied to Windows-
based platforms, for which most exploits are written for and whose users are traditionally
less tech savvy. There is no reason why the same techniques cannot be integrated into
Windows-based products though.

It should also be noted that a successful attack scheme on PaX has been published in
Phrack [12]. It directly calls the dynamic linker’s symbol resolution procedure to get
around the ASLR aspect of PaX and uses a traditional ret-libC exploit from there. This
supports the idea that single solutions are inadequate.

3.6 Hardware: Dynamic Information Flow Tracking
DIFT (Dynamic Information Flow Tracking) is a hardware-based tainting mechanism
[13]. It offers two different security policies depending on the amount of protection
needed and overhead willing to be incurred. Data from I/O channels is considered

7

spurious and is marked as such. This data is stored in an extra bit and is propagated to
other memory locations as it interacts with other pieces of data. DIFT makes additions to
a standard processor to add the extra bits and proposes various schemes to minimize
memory and performance overhead. The processor then checks the taint bits before
executing an instruction or committing to a branch.

On some architectures, standard integer arithmetic instructions are indistinguishable from
pointer arithmetic instructions. This poses a problem for taint bit propagation. Also, in the
case of properly coded program first bounds checking a piece of data and then combining
it with a trusted pointer, a perfectly safe piece of code could be marked as tainted. In this
case, the operating system taint module could be invoked many times, resulting in a hefty
overhead. There is also a format string attack that takes advantage of a little known printf
feature that can bypass DIFT [14].

3.7 Hardware: Secure Bit2
Secure Bit2 also extends every memory location by one bit which is used to add semantic
meaning to each word of memory [15]. This bit is moved along with its associated word
by memory manipulating instructions. Words in buffers between processes get their
secure bit set while all others mark the secure bit at the destination register or memory
location. CALL, RET and JMP instructions check the secure bit and if set, generate an
interrupt or fault signal. Modifications are required at the kernel level to set the secure
bit when passing a buffer across domains. Since the address validation is done in
hardware, there is little performance overhead. Memory overhead is related to the total
size of memory. An additional bit is needed for each word.

This solution is closer to the type that has a chance to be implemented widely. There is
minimal user intervention required and it should be immune to the standard stack-
smashing attack scheme. However, there is still the possibility of overwriting in-band
data stored on the stack. Such an event could cause unintended and incorrect program
behavior and potentially could be used to form an attack itself. As previously mentioned,
it has been shown that attacks on non-control based data are dangerous as well.

3.8 Categorization of Past Solutions
In Figure 1, the continuum of user involvement in taking advantage of the previously
mentioned solutions is given. At the uppermost portion of the figure are safe languages
like Java and Cyclone that require a great amount of work on the user’s part. Obviously,
as more labor is required of the user, the tasks become inherently more complex and
require a more tech savvy user. Past a certain point there is little utility in such a solution
because a user of this level of expertise is likely to have other protections installed on
his/her computer and is less likely to download or run malicious software.

The goal for our solution is to have it exist at the tip of the arrow in Figure 1, representing
a minimal level of user involvement and thus, skill. It is only this type of solution that
can hope to be successful on a large scale. Requiring any more work or skill on the
user’s behalf would result in a solution that may fix the problem, but is unlikely to ever
help the end-user.

8

Figure 1: Diagram illustrating the range of user intervention to implement various buffer overflow solutions.

3.9 Secure Architectures
Dating all the way back to 1959, there has been an effort to create more secure processors
by enforcing safety precautions at the hardware level. Capability-based architectures
refer to computer systems that access data using an address that refers to both the
memory object itself and a set of access rights that govern how that data can be used. For
an excellent reference of past such architectures see [16].

First shown in the early 1960s, the Burroughs family of processors incorporated some
very sophisticated features for their time [17]. Originally, the B5000 used a 1 bit tag as
part of its 32 bit word. The B6000 expanded it to 3 bits and moved it outside the word.
It differentiates data from code and control words and is even used to indicate type (such
as single and double precision floating point). The hardware enforced security
mechanism makes it impossible to execute data as code or to interpret code as data.

Released in 1980, the IBM System/38 sought to be a totally object-oriented architecture
[18]. The System/38 featured 40 bit words consisting of 32 data bits, 7 bit ECC, and a 1
bit tag. The tag bit is set whenever the data bits contain a pointer while all other words in
memory have their tag bits cleared. These tag bits cannot be accessed by the instruction
interface and cannot be set by the user. Instead, they are manipulated by instructions that
use microcode to build the pointers and maintain the integrity of the tag bits. User
modification of the pointer results in its tag bits to be cleared making it invalid for
addressing purposes.

Introduced in the year after the IBM System/38, the design and layout of the chip set for
the Intel iAPX 432 took over 100 man-years [16]. Memory references are performed
using 32 bit long access descriptors (ADs) that specify the actual address and access
rights to an object. A procedure can only address and manipulate the ADs that are within

Safe Languages:
Java, Cyclone

Compiler Based:
CRED, StackGuard

Safe Libraries:
Safelib

Operating System
additions: PaX.
ExecGuard

Hardware-Based:
DIFT, Secure Bit2,
NX bit

Decreasing
Amount of
Required
User
Interaction

Applications:
Program
Shepherding.

9

its execution environment. The access rights specify whether the possessor of the AD
can read from or write to the object or delete the AD itself. Unfortunately, the iAPX 432
was doomed by performance problems and an overzealous marketing campaign.

A novel computer architecture that is still around today is used by Unisys Mainframes
[19]. The ISA tags each word of memory to indicate how the data stored there can be
used. All data references are done through descriptors generated by the hardware and
operating system using instructions unavailable to ordinary user code. Every memory
reference is checked for a valid descriptor and that the reference is within appropriate
bounds. Programs that are running are not given privilege to descriptors that hold their
own code or that of another program. Furthermore, code and data are kept separate
eliminating any adjacency between buffers and areas containing executable code.

These types of ideas were brought into the mainstream when AMD began to use an extra
bit, the No eXecute bit (NX), to mark pages of memory as non-executable. Intel’s
version of AMD’s NX bit is called the Execute Disable Bit [20]. The capability of the
processor to take advantage of this sort of functionality can be queried by the operating
system that is running. When activated by setting the bit IA32_EFER.NXE, memory
pages can be marked as not being executable. This is done by adjusting bit 63 in the
corresponding page table entry for that page of memory. If the protection is running and
an instruction fetch to a linear address that translates to a physical address in a memory
page that has the execute disable bit set, a page fault exception will be generated. This
sort of protection is very close to what is desired in protecting memory from memory
based vulnerabilities: there is no effort required of the user other than having a processor
with the ability, it incurs very little memory or performance overhead, and is backwards
compatible with existing code.

To allow for that backwards compatibility, Intel decided to give the host OS the ability to
turn this protection on or off. Windows XP Service Pack 2 and Windows 2003 Service
Pack 1 contain patches to take advantage of this hardware feature by using what
Microsoft calls Data Execution Prevention (DEP). Shortly after their debut, exploits
began to be posted that easily sidestepped the mechanism [21]. In order to bypass DEP, a
ret-libC style attack can be used to jump to a section of system code marked as
executable that can then further be exploited to disable DEP and return into shell code
stored in the original buffer. If there was no way that a process could disable NX support
at runtime, this exploit would not work.

It is this particular fact that makes it seem that a mandatory access control mechanism
that works at the hardware level would be more successful. Protection schemes at the
hardware level should not be allowed to be circumvented by the OS. While it is
understandable that some security tradeoffs may need to be made to allow for backwards
compatibility, some basic security components should not.

10

4 Design
This solution borrows the ideas from current approaches and implements them at a level
that has the most impact and requires the least user and end-user know-how. This can be
achieved by implementing a Mandatory Access Control mechanism within the processor
hardware.

By implementing the solution in hardware, all future processors can potentially have
additional safe guards that can be used by the most people, like the NX bit. As support
becomes more widespread, more abstract components of the CPU could take advantage
of this type of protection.

There were numerous design considerations but we finalized on the same tagging
architecture that operates on memory objects as that found in the original Burroughs
system and others. Through our research, we have found that enabling access control at
the function level required too much re-engineering of the processor’s architecture.

4.1 Failure of Function Level Access Control
The largest impediment to a function level access control design was that current
processors are largely function-agnostic. The lack of support for function level operations
makes a function level approach extremely expensive to develop. The first problem we
discovered was the existence of both branch and CALL instructions. While it is desirable
to utilize the CALL instruction when available, it is not an architectural requirement. Users
are allowed to directly utilize the branch instruction to jump to a predefined start of the
next function. This meant that it was impossible, with current processor architectures, to
confidently infer the beginning and end of a function. Thus function level access control
would require a complete redesign and implementation of a different instruction
invalidating all of today’s software.

In addition to this debilitating result, we also realized that even if a processor with the
strict call-only instruction set was available, it would still have to be redesigned to
include a storage area for keeping track of all the different functions in all of the different
processes that are currently operating. While it is possible to incorporate such tables into
current memory hierarchies by designating certain memory areas as processor only,
similar to the Linux kernel’s kernel address space, it is still too difficult. To realize this
approach, the processor must maintain a table for each running process and ensure that
there is enough space for as many tables as there could be processes. Given that the table
would require the number of processes x number of threads / process x number of
functions / thread x size of table / function bytes where the number of processes and
threads are not necessarily bounded, it would add an additional requirement on the virtual
memory management unit to ensure that these tables are paged as necessary. It was
deemed that this required too much behind the scenes coordination.

4.2 Instruction Level Access Control
Given the desire to keep the solution as simple as possible, we determined that enforcing
access control at the instruction level would be perfect. Although it is true that
instructions are even lower level than functions, it does not mean that the design and

11

implementation is more difficult. In fact, because processors naturally operate
instructions, it is actually considerably easier. The only required changes are to provide a
tag for each byte of memory and change each processing instruction to enforce a simple
policy based on each byte’s tag.

We concluded that tagging each byte of memory is the desired approach. This was
chosen in favor of tagging each word, since memory architectures are byte addressable,
even though most compilers use word boundaries. Although it does mean that there will
be considerable storage overhead, it is compatible with virtual memory architectures. The
only change needed is to ensure that the memory management unit reserves a portion of
memory for this purpose. The tag can then be stored in this portion and is easily
accessible through a simple address mask like current virtual memory architectures. This
portion of memory can also be paged and loaded like any other memory locations as well.
It is a significantly simpler feat than that of the function level approach, since this does
not require the processor to know about running processes or functions.

We determined that one bit per byte is sufficient to provide an evolved version of the no
execution functionality. Unlike current techniques though, the bit will be used to mark
individual bytes as executable instead of whole pages. The advantage of marking bytes is
to ensure that there is no slack space where an attacker can inject their own code that
would be automatically executable because it was placed into an executable page. This
approach requires an operating system level patch to ensure the loader marks each
instruction byte as executable and all others within the page as non-executable. As
discussed above, operating system patches are largely automated, which makes this a
desirable solution. Hopefully, all the end-user has to do is purchase a new computer.

We also determined that two bits per byte are sufficient to prevent stack smashing and
similar buffer based attacks as well. The first bit will be used as the executable flag while
the second bit is used as the vector flag. The vector flag will be set if the byte is part of a
vector object, i.e. array, and unset if it is a scalar. Given this distinction the processor can
ensure that instructions that start writing in one type cannot continue writing to another
type. This approach has its drawbacks though as the processor must be designed to be
cognizant of write loops and it does not prevent overwriting from one vector variable into
another vector if they are contiguous. One method to get around this weakness is to
ensure that compilers separate vectors with a scalar in the middle, but even this approach
is still not robust against multi-dimension arrays where the vectors must be contiguous
for alignment purposes.

Perhaps a better use of this additional bit is for the processor to mark certain bytes of
memory as processor only. This will ensure that the saved stack pointer and return
addresses that are part of the function pre-amble can only be written to by the CALL and
RET instructions. The only drawback to this approach is the wasted bit for all of the bytes
which are not used solely by the processor, which is the majority by far.

We determined that the best use of the two bits is to utilize all four combinations of
scalar/vector and execute/no-execute. Since only instructions are executable, and
instructions are scalar objects, executable vectors should be an invalid combination. This
combination can be used to represent processor only bytes. Although it does mean that a

12

default tag for uninitialized bytes is unavailable. Also, uninitialized bytes would have to
have the same bit combination as scalar non-executable.

Given the above tagging schemes, we then developed a simple policy to enforce the
scheme. The policy is shown in Figure 2.

13

5 Proof of Concept
To determine whether or not the above mentioned technique was feasible, a proof of
concept was developed. Due to resource constraints the proof of concept did not fully
show that the solution would mitigate common memory based vulnerabilities like buffer
overflows, but it did show that the concept is sound.

5.1 Bochs
To implement our protection scheme, we needed a platform on which to make additions
to the standard CPU hardware. During this project, we reviewed three processor

Tag or Datatype Policy
00 (non-executable scalar) MOV-like instructions must be stateful. If first write is scalar

then this write is not allowed.
01 (executable scalar) Branch and call instructions can only jump to memory

locations with this tag. It will fault otherwise.
10 (non-executable vector) MOV-like instructions must be stateful. If first write is

vector then this write is allowed, else its not.
11 (processor only byte) CALL and RET instructions have write access. CALL sets this

tag and RET unsets it. All other instructions only have read
access.

Figure 2: Simple Policy

simulators: OpenRISC 1000 Simulator, SimpleScalar and Bochs [22][23][24]. During
our trials, we found that both OpenRISC and SimpleScalar were immature and lack
adequate documentation. OpenRISC simulator has not been updated since May 2006 and
SimpleScalar since August 2004. Unlike other documented users, we were unable to get
either simulator up and running within the short time we had. Thus, we had to resort to
Bochs, even though Bochs implemented the more complex x86 instruction set.

Hosted on SourceForge, Bochs is an open-source IA-32 emulator written in C++ that
aims to emulate the Intel x86 CPU, common I/O devices, and features a custom BIOS.
Bochs can be configured to emulate a host of different CPUs including: 386, 486,
Pentium / PentiumII / PentiumIII / Pentium4, or x86-64 CPU including support for
MMX, SSEx and 3DNow! instructions. It is capable of running on a multitude of
different host OSes and is capable of running Linux, DOS, Windows 95/98, Windows
NT/2000/XP, or Windows Vista as guests OSes.

For our deployment of Bochs, we used the default configuration which compiles it to
emulate a Pentium processor. Due to the extremely poor performance of the emulator,
RedHat 6.0 was used as the guest OS. The guest OS was configured to include the most
basic modules and the gcc compiler for building test applications.

14

5.2 Assembly Instruction Changes
To illustrate the feasibility of the solution, some of the assembly instructions in Bochs
were changed to reflect the policy. The ADD, SUB, MUL, DIV, MOV, store instructions
were altered to propagate the datatype of the source to the destination. Then the jump,
branch and CALL instructions were implemented to ensure that they can only jump to
memory locations that are tagged as executable, else it would log an error message to
simulate a trap. Notice that this does not completely implement the above mentioned
policy as there was not enough time to reengineer a state machine into the MOV
instruction.

Also we decided that implementing a specialized instruction for the operating system’s
executable loader to tag memory locations as executable is not necessary at this point.
Although it will be required when a full solution is designed, it is useless at this point
because rewriting an operating system kernel to take advantage of it is a non-trivial task.
Instead, we utilized a special trigger for setting and unsetting memory locations as
executable.

Upon review of all available instructions, we found that the MOV instruction will always
trap if used with the 0xFFFFFFFF and 0xFFFFFFFE memory addresses under normal
operation. We took advantage of this and used 0xFFFFFFFF as the trigger for setting the
executable flag and 0xFFFFFFFE as the trigger for unsetting the flag. To enable this, the
MOV instruction was implemented so it maintains some state. When the MOV
instruction’s memory address is 0xFFFFFFFF the state is noted. The next time the MOV
instruction is called, the memory address is treated as the start address for tagging. The
third time the MOV instruction is called, the memory address is treated as the end address
for tagging. This allows the user to tag a range of addresses as executable, similar to what
the loader would have to do. All subsequent MOV instructions behave normally.
Similarly the 0xFFFFFFFE MOV instruction removed the executable flag.

5.3 Memory Mapping
In this proof of concept implementation, the tagging information was not integrated into
the memory management unit. Instead of storing all of the datatype information in main
memory as described above, a completely separate memory space was created within
Bochs to hold the data. This was done to reduce the time required to ensure that the
memory management unit is properly designed and implemented to be completely
backwards compatible. The summer student who worked on this project will be
conducting additional research into the memory management unit, the necessary changes,
and performance effects for his master’s thesis.

15

6 Results
As shown in the Figure 3, the specialized MOV instructions for setting and unsetting the
executable flag for memory locations are fully functional. This confirms that the tagging
architecture itself is feasible. Although it does not show that it is feasible when integrated
as part of the standard memory address space and therefore observing all virtual memory
properties. This must be confirmed at a later date.

Also, it was confirmed that the instructions indeed propagated the tagging information,
which is a desired effect. Finally it was also confirmed that when the implemented policy
was violated, e.g. when the JMP instruction tried to jump to a memory location that was
not marked as executable, an error message was logged, simulating a trap.

Figure 3: Illustration of Executable Tagging

Performance overhead measurements were not obtained during this proof of concept
demonstration. This is due to the lack of a well defined set of metrics and measurement
methodologies. Although, it is expected that performance degradation will be minimal if
the memory management unit can ensure that the tagging data is loaded into the
processor’s cache at the same time as memory fetches.

6.1 Conclusion
All of the results show that the proposed approach is feasible to a certain extent.
Although it was not possible to complete a proof of concept demonstration for a full
fledged solution, the intermediate results are promising. This is especially true when we
take into account the fact that the changes we made to the emulated processor did not
break any of the software that runs on it. It was still completely backwards compatible.
Although this might change once a true trap is utilized instead of a simple error log, this

16

simple proof of concept did show that the addition of tagging information for memory
objects maintains backwards compatibility.

Additional work is required to continue the development of the policy and a proof of
concept demonstration that incorporates the full policy as well as full functionality.
Furthermore, the proof of concept should include an operating system that is capable of
leveraging this new paradigm and whose loader can actually set and unset the memory
locations as executable. Only in this way can we confirm that the end-user and user are
the same for this solution.

Finally, during our investigation of possible tagging schemes, we have also developed
schemes that utilize more than two bits. This is largely to fully cover the read and write
privileges of each byte of memory. The current solution is only robust against simple
buffer overflows and mitigates code execution threats. In the more advanced schemes,
additional bits will be utilized to represent specific data types such as int, char, pointer
etc. We envisioned that the additional types can help make data corruption more difficult
if we ensured that you can only overwrite ints with ints or instructions with instructions.
In the future, we would like to verify that there is added value in these types and also
develop the policies to further mitigate data corruption and disclosure threats. We would
also like to show the positive effects of utilizing the proposed solution in conjunction
with other low required-user-interaction, such as OS level, solutions for a defense in
depth approach.

17

7 References

[1] Orman, H. “The Morris Worm: A Fifteen-Year Perspective.” IEEE Security &
Privacy Magazine, 1, 5 (Sept. – Oct. 2003), 35-43.

[2] Moore, D., Shannon, C., and claffy, k. “Code-Red: a case study on the spread and
victims of an internet worm.” In Proceedings of the 2nd ACM SIGCOMM Workshop on
internet Measurment (Marseille, France, November 06 - 08, 2002). IMW '02. ACM
Press, New York, NY, 273-284. http://doi.acm.org/10.1145/637201.637244

[3] National Vulnerability Database. Accessed 14 August 2007.
http://www.nvd.nist.gov/

[4] Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J. and Wang, Y.
“Cyclone: A safe dialect of C.” In Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, 275-288.
http://www.cs.cornell.edu/Projects/cyclone/papers/cyclone-safety.pdf

[5] Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A.,
Wagle, P., Zhang, Q., and Hinton, H. “StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks.” In Proceedings of the 7th USENIX Security
Conference (San Antonio, TX, Jan 1998). 63-78.

[6] Ruwase, O. and Lam, M. A practical dynamic buffer overflow detector. In Proc.
11th Annual Network and Distributed System Security Symposium, Feb 2004.

[7] Ghory, Z. “Protecting Systems with Libsafe.” Security Focus. August 20, 2001.
http://www.securityfocus.com/infocus/1412

[8] Kiriansky, V., Bruening, D., and Amarasinghe, S. P. “Secure Execution via
Program Shepherding.” In Proceedings of the 11th USENIX Security Symposium (August
05 - 09, 2002). D. Boneh, Ed. USENIX Association, Berkeley, CA, 191-206.

[9] Zhang, K., Zhang, T., and Pande, S. “Memory Protection through Dynamic
Access Control.” In Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture (December 09 - 13, 2006). International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 123-134. DOI=
http://dx.doi.org/10.1109/MICRO.2006.33

[10] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. “Non-control-data
attacks are realistic threats.” In Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14 (Baltimore, MD, July 31 - August 05, 2005). USENIX
Association, Berkeley, CA, 12-12.

[11] Silberman, P., and Johnson, R. “A Comparison of Buffer Overflow Prevention
Implementations and Weaknesses.” I-Defense, 1875 Campus Commons Dr. Suite 210
Reston, VA 20191, http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-
silberman/bh-us-04-silberman-paper.pdf

http://doi.acm.org/10.1145/637201.637244
http://www.nvd.nist.gov/
http://www.cs.cornell.edu/Projects/cyclone/papers/cyclone-safety.pdf
http://www.securityfocus.com/infocus/1412
http://dx.doi.org/10.1109/MICRO.2006.33
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf

18

[12] Nergal. “The advanced return-into-lib(c) exploits: PaX case study.” Phrack
Magazine 58(4), December 2001.
http://www.phrack.org/issues.html?issue=58&id=4#article

[13] Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. “Secure program execution via
dynamic information flow tracking.” In Proceedings of the 11th international Conference
on Architectural Support For Programming Languages and Operating Systems (Boston,
MA, USA, October 07 - 13, 2004). ASPLOS-XI. ACM Press, New York, NY, 85-96.
http://doi.acm.org/10.1145/1024393.1024404

[14] Dalton, M., Kannan H., and Kozyrakis, C. “Deconstructing Hardware
Architectures for Security.” In the 5th Annual Workshop on Duplicating, Deconstructing,
and Debunking, Boston, MA, June 2006.

[15] Piromsopa, K., and Enbody, R. “Secure Bit2: Transparent, Hardware Buffer-
Overflow Protection. “ Technical Reports #MSU-CSE-05-9, Department of Computer
Science and Engineering, Michigan State University (2005).

[16] Levy, H. M. Capability-Based Computer Systems. Butterworth-Heinemann.

[17] Mayer, A. J. “The architecture of the Burroughs B5000: 20 years later and still
ahead of the times?” SIGARCH Comput. Archit. News 10, 4 (Jun. 1982), 3-10.
http://doi.acm.org/10.1145/641542.641543

[18] Houdek, M. E., Soltis, F. G., and Hoffman, R. L. “IBM System/38 support for
capability-based addressing.” In Proceedings of the 8th Annual Symposium on Computer
Architecture (Minneapolis, Minnesota, United States, May 12 - 14, 1981). International
Symposium on Computer Architecture. IEEE Computer Society Press, Los Alamitos,
CA, 341-348.

[19] Unisys Mainframes: Secure MCP Systems – Secure by Design. Accessed 2
September 2007.
http://www.unisys.com/products/mainframes/security/secure__mcp__systems/secure__b
y__design.htm

[20] “Execute Disable Bit Functionality Blocks Malware Code Execution.” Intel
Website. Accessed 11 September 2007. http://cache-
www.intel.com/cd/00/00/14/93/149307_149307.pdf

[21] “Bypassing Windows Hardware-Enforced Data Execution Prevention.”
Nologin.org. Accessed 11 September 2007. http://uninformed.org/?v=2&a=4&t=pdf

[22] OpenRISC 1000 (or1k) Simulator. Accessed 24 September 2007.
http://www.opencores.org/projects/or1k/

[23] SimpleScalar. Accessed 24 September 2007.
http://www.cs.wisc.edu/~mscalar/simplescalar.html

[24] Bochs: The Open Source IA-32 Emulation Project. Accessed 24 September 2007.
http://Bochs.sourceforge.net/

http://www.phrack.org/issues.html?issue=58&id=4#article
http://doi.acm.org/10.1145/1024393.1024404
http://doi.acm.org/10.1145/641542.641543
http://www.unisys.com/products/mainframes/security/secure__mcp__systems/secure__b
http://cache-www.intel.com/cd/00/00/14/93/149307_149307.pdf
http://cache-www.intel.com/cd/00/00/14/93/149307_149307.pdf
http://cache-www.intel.com/cd/00/00/14/93/149307_149307.pdf
http://uninformed.org/?v=2&a=4&t=pdf
http://www.opencores.org/projects/or1k/
http://www.cs.wisc.edu/~mscalar/simplescalar.html
http://Bochs.sourceforge.net/

	1 Introduction
	2 Background
	3 Related Work
	4 Design
	5 Proof of Concept
	6 Results
	7 References

